\(\int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx\) [367]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 89 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx=\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}+\frac {2 (A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 d}-\frac {2 a (A b-a B) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 (a+b) d} \]

[Out]

2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b/d+2*(A*b-B*a)*(cos
(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/d-2*a*(A*b-B*a)*(cos(1/2
*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/b^2/(a+b)/d

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {3081, 2719, 2882, 2720, 2884} \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx=\frac {2 (A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 d}-\frac {2 a (A b-a B) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 d (a+b)}+\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d} \]

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x]),x]

[Out]

(2*B*EllipticE[(c + d*x)/2, 2])/(b*d) + (2*(A*b - a*B)*EllipticF[(c + d*x)/2, 2])/(b^2*d) - (2*a*(A*b - a*B)*E
llipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b^2*(a + b)*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2882

Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[d/b
, Int[1/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[(b*c - a*d)/b, Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e +
f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {B \int \sqrt {\cos (c+d x)} \, dx}{b}-\frac {(-A b+a B) \int \frac {\sqrt {\cos (c+d x)}}{a+b \cos (c+d x)} \, dx}{b} \\ & = \frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}+\frac {(A b-a B) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{b^2}-\frac {(a (A b-a B)) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b^2} \\ & = \frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}+\frac {2 (A b-a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 d}-\frac {2 a (A b-a B) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 (a+b) d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.73 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.44 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx=\frac {A b \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )-\frac {2 B \left (b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-(a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+a \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{\sqrt {\sin ^2(c+d x)}}}{b^2 d} \]

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x]),x]

[Out]

(A*b*(2*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)) - (2*B*(b*Ellipti
cE[ArcSin[Sqrt[Cos[c + d*x]]], -1] - (a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + a*EllipticPi[-(b/a),
ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/Sqrt[Sin[c + d*x]^2])/(b^2*d)

Maple [A] (verified)

Time = 4.99 (sec) , antiderivative size = 295, normalized size of antiderivative = 3.31

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (A F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -A F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}-A \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right ) a b -B F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}+B F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -B E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b +B E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}+B \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right ) a^{2}\right )}{b^{2} \left (a -b \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(295\)

[In]

int(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+cos(d*x+c)*b),x,method=_RETURNVERBOSE)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)
^2+1)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-A*Ellipti
cPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a*b-B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^2+B*EllipticF(cos(1/2
*d*x+1/2*c),2^(1/2))*a*b-B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b
^2+B*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^2)/b^2/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2
*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{b \cos \left (d x + c\right ) + a} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{b \cos \left (d x + c\right ) + a} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{a+b\,\cos \left (c+d\,x\right )} \,d x \]

[In]

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x)))/(a + b*cos(c + d*x)),x)

[Out]

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x)))/(a + b*cos(c + d*x)), x)